
Low-Resource Routing Attacks Against Tor

Kevin Bauer† Damon McCoy† Dirk Grunwald† Tadayoshi Kohno‡ Douglas Sicker†

† Department of Computer Science ‡ Department of Computer Science and Engineering
University of Colorado University of Washington

Boulder, CO 80309-0430 USA Seattle, WA 98195-2969 USA
{bauerk, mccoyd, grunwald, sicker}@colorado.edu yoshi@cs.washington.edu

ABSTRACT
Tor has become one of the most popular overlay networks
for anonymizing TCP traffic. Its popularity is due in part
to its perceived strong anonymity properties and its rela-
tively low latency service. Low latency is achieved through
Tor’s ability to balance the traffic load by optimizing Tor
router selection to probabilistically favor routers with high-
bandwidth capabilities.

We investigate how Tor’s routing optimizations impact its
ability to provide strong anonymity. Through experiments
conducted on PlanetLab, we show the extent to which rout-
ing performance optimizations have left the system vulner-
able to end-to-end traffic analysis attacks from non-global
adversaries with minimal resources. Further, we demon-
strate that entry guards, added to mitigate path disruption
attacks, are themselves vulnerable to attack. Finally, we ex-
plore solutions to improve Tor’s current routing algorithms
and propose alternative routing strategies that prevent some
of the routing attacks used in our experiments.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.2 [Computer-Communication
Networks]: Network Protocols; C.2.5 [Computer - Com-
munication Networks]: Local and Wide-Area Networks

General Terms
Security, Reliability, Experimentation

Keywords
Anonymity, Tor, Traffic Analysis, Load Balancing

1. INTRODUCTION
We present new methods for compromising the security of

the Tor anonymous overlay network [7]. This work focuses
upon the following two scientific questions: (1) how can we
minimize the requirements necessary for any adversary to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’07, October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-883-1/07/0011 ...$5.00.

compromise the anonymity of a flow; and (2) how can we
harden Tor against our attacks?

Central to our attacks is the fact that a lying adversary —
by exaggerating its resource claims — can compromise an
unfair percentage of Tor entry and exit nodes. Further, we
show how an adversary can compromise the anonymity of a
Tor path before any data is transmitted, which enables us
to further reduce the resource requirements on the attacker.
We experimentally evaluate the efficacy of our attacks via
experiments with an isolated Tor deployment on PlanetLab.
We also explore methods for mitigating the severity of our
attacks.

Historical Balance Between Anonymity and Perfor-
mance. Conventional wisdom suggests that it is impossible
for practical privacy-enhancing systems to provide perfect
anonymity. Therefore, the designers of such systems must
consider restricted threat models. Consider, for example,
an anonymous communications system that routes traffic
through multiple intermediate nodes. While it is generally
possible to perform a traffic analysis attack against a connec-
tion if both of the endpoints are compromised, theoretical
analyses of anonymous networks show that the likelihood of
successfully launching such a traffic analysis attack becomes
negligible as the network size increases [7, 23, 26].

When the Tor network was launched, it consisted of few
routers transporting little traffic. Consequently, in its ini-
tial design, Tor provided no traffic load balancing capability,
and it was with respect to this initial design that the above-
mentioned theoretical analyses were performed [7]. As the
network grew to include nodes with a wide variety of band-
width capabilities, it became necessary to ensure that the
traffic is efficiently balanced over the available resources in
order to achieve low latency service. Tor’s routing mech-
anism was modified to prefer high-bandwidth, high-uptime
routers that have the resources to accept new connections
and transport traffic. Dingledine, Mathewson, and Syver-
son suggested that a non-uniform router selection mecha-
nism may increase an attacker’s ability to compromise the
system’s anonymity [8], though the full security implications
of this load balancing was left to further research.

Our Approach. Within Tor’s routing model, an adversary
could deploy a few nodes that have — or appear to have —
high-bandwidth connections and high-uptimes. In the latter
case, the adversary is said to lie about its resources. With
high probability, such an adversary would be able to success-
fully compromise the two endpoints — the entry node and
the exit node — of a new Tor client’s connections. Compro-
mising the entry and exit nodes with non-uniform probabil-
ity is the first step in our attack.

11

As noted above, previous works showed that, upon com-
promising the entry and exit nodes, it is possible to com-
promise the anonymity of a connection via traffic analysis.
However, in the spirit of minimizing the resource require-
ments for the adversary, we develope an end-to-end method
for associating a client’s request to its corresponding desti-
nation before any payload data is sent. This is important
since low-resource malicious nodes may lack the bandwidth
to forward significantly many data packets.

Experimental Verification. We experimentally show, us-
ing an isolated Tor deployment on PlanetLab, that adver-
saries with sparse resources — such as adversaries with a
few nodes behind residential cable modems — can compro-
mise the anonymity of many paths for new clients. In a
Tor deployment of 60 honest and 6 malicious Tor routers,
our attack compromised over 46% of the path-building re-
quests from new clients through the network. This illus-
trates the inherent difficulty of simultaneously attempting
to provide optimal anonymity and efficient use of the net-
work’s resources.

Prior Attacks. Other attacks against Tor have focused
upon traffic analysis and locating hidden services. Murdoch
and Danezis presented a low cost traffic analysis technique
that allowed an outside observer to infer which nodes are be-
ing used to relay a circuit’s traffic [17], but could not trace
the connection to the initiating client. Øverlier and Syver-
son demonstrated a technique for locating hidden services
that used false resource claims to attract traffic [19]. Mur-
doch and Zieliński [18] analyze the route selection problem
in Tor in the context of Internet exchanges (IXes), and give
a new traffic analysis technique for processing data from
IXes. We extend the attack on hidden services to effectively
compromise the anonymity of general-purpose paths using
resource-constrained nodes.

Attack Variants and Improvements. We consider ad-
ditional attack variants and improvements in the body of
this paper. For example, we show how to adapt our attack
to compromise the flows of pre-existing Tor clients; recall
that our attack as described above is (generally) only suc-
cessful at compromising new clients, who have not already
picked their preferred entry nodes. We also consider further
resource reductions, such as using watermarking techniques
to, in some cases, eliminate the need for a compromised exit
node. An important extension is an attack upon the entry
guard selection process, where we show that it is possible
to displace all legitimate entry guards with malicious nodes.
Additionally, we consider methods to improve the effective-
ness of our attack, such as a variant of the Sybil attack [10].

Countermeasures. Next we explore counter-measures to
routing attacks in Tor. High-resource adversaries, even if
only in possession of a few malicious nodes, seem to pose
a fundamental security challenge to any high-performance,
multi-hop privacy enhancing system. We focus on design-
ing solutions to mitigate the low-resource attacker’s ability
to compromise anonymity. These solutions include verify-
ing information used in routing decisions, allowing clients to
make routing decisions based on observed performance, and
implementing location diversity in routers to mitigate Sybil
attacks.

Context. Following the initial disclosure of the primary
vulnerability behind our attacks [2], development began by
the Tor community on measures to mitigate the effectiveness

of these attacks. While an adversary’s ability to launch a
large number of malicious nodes from the same physical ma-
chine or network has been partially addressed [1], the more
challenging problem of verifying bandwidth claims remains
open.

Outline. The remainder of this paper is organized as fol-
lows: In Section 2, we describe the Tor system architecture
and its routing algorithms. Section 3 explains the attack
and the path linking algorithm and in Section 4, we present
the experimental setup and results. Additional attack ex-
tensions are considered in Section 5 and proposed defenses
are discussed in Section 6. Finally, we provide concluding
remarks in Section 7.

2. BACKGROUND
In order to present the methodology used in our experi-

ments, we first provide a brief overview of the Tor system
architecture, an in depth analysis of Tor’s router selection
algorithms, and a description of Tor’s attack model.

2.1 Understanding Tor at a High Level
The Tor project’s main goal is to develop a network that

protects the privacy of TCP connections. In addition, Tor
aims to provide end-user anonymity with constraints such as
low-latency, deployability, usability, flexibility, and simple
design. Currently, Tor can anonymize TCP streams, pro-
viding a relatively high-throughput and low-latency onion
routing network [14].

In the Tor architecture, there are several fundamental con-
cepts which are defined as follows: A Tor router is the server
component of the network that is responsible for forwarding
traffic within the core of the network. A Tor proxy is the
client part of the network that injects the user’s traffic into
the network of Tor routers; for our purposes, one can view
the Tor proxy as a service that runs on the user’s computer.
A circuit is a path of three routers (by default) through
the Tor network from the proxy to the desired destination
server. The first router on the circuit is referred to as the
entry router, the second router is called a middle router, and
the final hop is the exit router. Tor proxies choose stable
and high bandwidth routers to be entry guards, which are
used as an entry router. We use the terms entry guard and
entry router synonymously throughout this paper. Router
information is distributed by a set of well-known and trusted
directory servers. Finally, the unit of transmission through
the network is called a cell.

At the core of Tor is a circuit switched network. The cir-
cuits are carefully built in such a way that it is intended to be
complex and resource intensive for eavesdropping attackers
and malicious nodes within the network to link the origina-
tor of a circuit to the destination. Cells are encrypted by the
originator of the circuit using a layered encryption scheme.
Each hop along the circuit removes a layer of encryption
until the cell reaches the exit node at the end of the circuit
and is fully decrypted, reassembled into a TCP packet, and
forwarded to its final destination. This process is known as
onion routing [14]. For a thorough evaluation of the secu-
rity of Tor’s circuit building algorithm, we refer the reader
to Goldberg [13] and more details about the cryptography
used in Tor can be found in its design document [7].

Tor can operate as both a proxy, which builds circuits
to forward a local user’s traffic through the network and
also as a router, which will accept connections from other
routers/proxies and forward their traffic as well as the local

12

user’s traffic. By default, Tor currently operates as a proxy
(client), handling only the local user’s traffic.

2.2 Tor’s Router Selection Algorithms
There are currently (as of Tor version 0.1.1.23) two parts

to the algorithm that Tor uses to select which routers to
include in a circuit. The first part is used to select the en-
try router, and the second part is used to select subsequent
routers in the circuit. We will show methods to exploit both
of these algorithms, as currently implemented in Tor, in Sec-
tion 3.

Entry Router Selection Algorithm. The default algo-
rithm used to select entry routers was modified in May 2006
with the release of Tor version 0.1.1.20. Entry guards were
introduced to protect circuits from selective disruption at-
tacks, thereby reducing the likelihood of an attacker inten-
tionally breaking circuits until they are on a target victim’s
circuit [19]. The entry guard selection algorithm works by
automatically selecting a set of Tor routers that are marked
by the trusted directory servers as being “fast” and “sta-
ble.” The directory server’s definition of a fast router is one
that reports bandwidth above the median of all bandwidth
advertisements. A stable router is defined as one that ad-
vertises an uptime that is greater than the median uptime
of all other routers.

The client will only choose new entry guards when one is
unreachable. Currently the default number of entry guards
selected is three, and old entry guards that have failed are
stored and retried periodically. There is also an option
added to use only the entry guards that are hard-coded into
the configuration file, but this option is disabled by default.
This algorithm was implemented to protect the first hop of
a circuit by using a limited pool of nodes.

Non-Entry Router Selection Algorithm. The second
algorithm to select non-entry nodes is intended to optimize
router selection for bandwidth and uptime, while not always
choosing the very best nodes every time. This is meant to
ensure that all nodes in the system are used to some extent,
but nodes with more bandwidth and higher stability are used
most often. Tor has a set of TCP ports that are designated
as “long-lived.” If the traffic transiting a path uses one of
these long-lived ports, Tor will optimize the path for stability
by pruning the list of available routers to only those that are
marked as stable. This causes Tor’s routing algorithm to
have a preference towards routers marked as stable nodes.
For more details on this part of the algorithm, see the Tor
Path Specification [6].

The next part of the algorithm optimizes the path for
bandwidth. Briefly, this algorithm works as follows: Let bi

be the bandwidth advertised by the i-th router, and assume
that there are N routers. Then the probability that the i-th

router is chosen is approximately bi /
“PN

j=1 bj

”
. We as-

sume that
PN

j=1 bj > 0, since a zero value would imply that
the system has no available bandwidth. We provide pseu-
docode for the bandwidth optimization part in Algorithm 1.

The most significant feature of this algorithm is that the
more bandwidth a particular router advertises, the greater
the probability that the router is chosen. The routing algo-
rithm’s tendency to favor stable and high bandwidth nodes
is fundamentally important to the implementation of our
attack.

Algorithm 1: Non-Entry Router Selection

Input: A list of all known Tor routers, router list

Output: A pseudo-randomly chosen router, weighted
toward the routers advertising the highest
bandwidth

B ← 0, T ← 0, C ← 0, i← 0, router bw← 0
bw list← ∅
foreach router r ∈ router list do

router bw← get router adv bw(r)
B ← B + router bw
bw list← bw list ∪ router bw

end
C ← random int(1,B)
while T < C do

T ← T + bw listi

i← i + 1
end
return router listi

2.3 Tor’s Threat Model
Tor’s design document [7] lays out an attack model that

includes a non-global attacker that can control or monitor a
subset of the network. The attacker can also inject, delay,
alter, or drop the traffic along some of the links. This at-
tack model is similar to the models that other low-latency
anonymous systems such as Freenet [4], MorphMix [24], and
Tarzan [12] are designed to protect against.

As a component of Tor’s attack model, the designers ac-
knowledge that an adversary can potentially compromise a
portion of the network. To predict the expected percent-
age of flows compromised by such an adversary, a simplified
theoretical analysis of a privacy enhancing system is pro-
vided in Tor’s design document [7]. This analysis is based
on a combinatorial model that assumes nodes are chosen at
random from a uniform distribution.

3. COMPROMISING ANONYMITY
We now consider how an adversary might compromise

anonymity within the Tor threat model by gaining access
to a non-global set of malicious nodes. In our basic at-
tack, we assume that these malicious nodes are fast and
stable, as characterized by high bandwidths and high up-
times. While even the basic attack squarely compromises
anonymity under Tor’s target threat model [7], we also show
how to remove these performance restrictions for an even
lower-resource attack.

We focus on attacking the anonymity of clients that run
in their default configurations; in particular, we assume that
clients function only as Tor proxies within the network. We
also focus on attacking clients that join the network after the
adversary mounts the first phase of our attack (Section 3.1);
we shall remove this restriction in Section 5.

3.1 Phase One: Setting Up
To mount our attacks, an adversary must control a subset

of m > 1 nodes in the pool of active Tor routers. The adver-
sary might obtain such nodes by introducing them directly
into the Tor network, or by compromising existing, initially
honest nodes. The adversary may coordinate these compro-
mised machines in order to better orchestrate the attack.

The Basic Attack. In our basic attack, the adversary’s
setup procedure is merely to enroll or compromise a number
of high-bandwidth, high-uptime Tor routers. If possible, the
adversary should ensure that all of these nodes advertise

13

Figure 1: Attack Model: Evil Tor routers are po-
sitioned at both the entry and exit positions for a
given client’s circuit to the requested server through
the Tor network.

unrestricted exit policies, meaning that they can forward
any type of traffic.

Resource Reduction. We can significantly decrease the
resource requirements for malicious nodes, thereby allowing
them to be behind low-bandwidth connections, like residen-
tial broadband Internet connections. This extension exploits
the fact that a malicious node can report incorrect (and
large) uptime and bandwidth advertisements to the trusted
directory servers [19]. These false advertisements are not
verified by the trusted directory servers, nor by other clients
who will base their routing decisions on this information,
so these false advertisements will remain undetected. Thus,
from the perspective of the rest of the network, the adver-
sary’s low-resource routers actually appear to have very high
bandwidths and uptimes. It is important that the malicious
nodes have just enough bandwidth to accept new connec-
tions. This is achieved by focusing the nodes’ limited re-
sources toward accepting new client connections.

Selective Path Disruption. If malicious nodes do not
exist at both the entry and exit positions of a circuit, but at
only one position (either entry, middle, or exit), it can cause
the circuit to break simply by dropping all traffic along the
circuit. This causes the circuit to be rebuilt with a chance
that the rebuilding process will create a path configuration
in which both the entry and exit nodes are malicious.

What Happens Next. Since one of Tor’s goals is to pro-
vide a low-latency service, when a new client joins the net-
work and initiates a flow, the corresponding Tor proxy at-
tempts to optimize its path by choosing fast and stable Tor
routers. By deploying nodes with high bandwidths and high
uptimes, or by deploying nodes that give the impression of
having high bandwidths and high uptimes, the adversary
can increase the probability that its nodes are chosen as
both entry guards and exit nodes for a new client’s circuit.
Compromising the entry and exit position of a path is a nec-
essary condition in order for the second phase of our attack
(Section 3.2) to successfully correlate traffic.

As a brief aside, on the real Tor network, roughly half
of the Tor routers have restricted exit policies that do not
allow them to be selected as exit nodes for all flows. This

situation further increases the probability that one of the
adversary’s nodes will be chosen as a flow’s exit node.

3.2 Phase Two: Linking Paths
We have shown a method that increases the likelihood

of a malicious router existing on a particular proxy’s path
through Tor. In the improbable case when the full path has
been populated with malicious nodes, it is trivial to com-
promise the anonymity of the path. However, in the more
likely case, if only the entry and exit nodes are malicious, we
have developed a technique that allows paths to be compro-
mised with a high probability of success (see Figure 1). Our
approach here is independent of whether the adversary is
implementing the basic or the resource-reduced attack from
Section 3.1.

While others have postulated the possibility that an ad-
versary could compromise the anonymity of a Tor route if the
adversary controlled both the route’s entry and exit nodes [7,
19], to the best of our knowledge, our approach is the first
that is capable of doing so before the client starts to trans-
mit any payload data. This ability is important, because
a resource-starved adversary should desire to minimize the
cost of the attack in order to maximize the number of circuits
that may be compromised. Furthermore, we experimentally
verify the effectiveness of our approach in Section 4.

}

Step 3

Step 1

Step 2}

}

Tor Proxy

TLS[build_ack]

TLS[build_1]

TLS[build_2]

TLS[build_ack]

E_K1[build_ack]

E_K1[E_K2[extend_3]]

TLS[build_3]

E_K2[extend_3]

TLS[build_ack]

E_K2[build_ack]

E_K1[E_K2[build_ack]]

Entry Router Exit Router

Time

Middle Router

E_K1[extend_2]

Figure 2: A sequential packet diagram of Tor’s cir-
cuit building process. In Step 1, the client chooses
the first hop along the circuit. Step 2 shows the
chosen entry router forwarding the client’s request
to the chosen middle router. Step 3 shows the en-
try and middle routers forwarding the final circuit
building request message to the desired exit node.
Key K1 is a shared secret key between the client
and the entry router. Key K2 is a shared secret key
between the client and the middle router.

Overview. In order for the attack to reveal enough in-
formation to correlate client requests to server responses
through Tor, each malicious router logs the following infor-

14

mation for each cell received: (1) its location on the current
circuit’s path (whether it is an entry, middle, or exit node);
(2) local timestamp; (3) previous circuit ID; (4) previous
IP address; (5) previous connection’s port; (6) next hop’s
IP address; (7) next hop’s port; and (8) next hop’s circuit
ID. All of this information is easy to retrieve from each ma-
licious Tor router. Once this attack has been carried out,
it is possible to determine which paths containing a mali-
cious router at the entry and exit positions correspond to a
particular Tor proxy’s circuit building requests. With this
information, an attacker can associate the sender with the
receiver, thus compromising the anonymity of the system. In
order to execute this algorithm, the malicious nodes must be
coordinated. The simplest approach is to use a centralized
authority to which all malicious nodes report their logs. This
centralized authority can then execute the circuit-linking al-
gorithm in real-time.

Details. Tor’s circuit building algorithm sends a determin-
istic number of packets in an easily recognizable pattern.
Figure 2 shows the steps and the timing associated with a
typical execution of the circuit building algorithm. A proxy
creates a new circuit through Tor as follows: First, the proxy
issues a circuit building request to its chosen entry router
and the entry router sends an acknowledgment. Next, the
proxy sends another circuit building request to the entry
router to extend the circuit through a chosen middle router.
The middle router acknowledges the new circuit by sending
an acknowledgment back to the client via the entry node.
Finally, the proxy sends a request to extend the circuit to
the chosen exit node, which is forwarded through the en-
try and middle routers to the chosen exit router. Once the
exit router’s acknowledgment has been received through the
middle and entry nodes, the circuit has been successfully
built.

In order to exploit the circuit building algorithm, it is nec-
essary to associate the timing of each step and analyze the
patterns in the number and direction of the cells recorded.
A packet counting approach as used to locate hidden ser-
vices [19] would not be sufficient, since not all cells sent
from the Tor proxy are fully forwarded through the circuit;
thus, the number of cells received at each Tor router along
the circuit is different. This pattern is highly distinctive and
provides a tight time bound, which we utilize in our circuit
linking algorithm.

Our circuit linking algorithm works as follows: The entry
node verifies that the circuit request is originating from a
Tor proxy, not a router. This is easily determined since there
will be no routing advertisements for this node at the trusted
directory servers. Next, the algorithm ensures that steps 1,
2, and 3 occur in increasing chronological order. Also, it is
necessary to verify that the next hop for an entry node is the
same as the previous hop of the exit node. Finally, in step
3, it is verified that the cell headed towards the exit node
from the entry node is received before the reply from the
exit node. If every step in the algorithm is satisfied, then
the circuit has been compromised.

4. EXPERIMENTS
In this section, we describe the experimental process we

used to demonstrate and evaluate our resource-reduced at-
tack. By experimentally evaluating our resource-reduced at-
tack, our experimental results also immediately extend to
the basic attack scenario in Section 3.

Table 1: Bandwidth Quality Distributions

Tier Tor Networks
Real Tor 40 Node 60 Node

996 KB 38 4 6
621 KB 43 4 6
362 KB 55 6 9
111 KB 140 13 20
29 KB 123 11 16
20 KB 21 2 3
Total 103.9 MB 10.4 MB 15.7 MB

4.1 Experimental Setup
In order to evaluate this attack in a realistic environment,

we set up an isolated Tor deployment on the PlanetLab over-
lay testbed [22]. We were advised not to validate our attack
on the real Tor network because of its potentially destructive
effect [5]; however, we did verify that our technique for pub-
lishing false router advertisements did, in fact, propagate for
a single test router on the real Tor deployment.

To ensure that the experimental Tor networks are as re-
alistic as possible, we surveyed the real Tor network in Au-
gust 2006 to determine the router bandwidth distribution.
This data is given in Table 1. According to the real trusted
Tor directory servers, there are roughly 420 Tor routers in
the wild that forward at least 5 KB per second. However,
due to limitations on the number of PlanetLab nodes that
were available over the course of the experiments, we cre-
ated smaller Tor networks according to our analysis of the
router quality distribution in the real deployment. We cre-
ated two isolated Tor networks on PlanetLab, consisting of
40 and 60 nodes, each running exactly one router per node.
Each experimental deployment has precisely three directory
servers, which are also nodes from PlanetLab.

When choosing nodes from PlanetLab for the experimen-
tal deployments, each node was evaluated using iperf, a
common bandwidth measurement tool [15], to ensure that
it had sufficient bandwidth resources to sustain traffic at
its assigned bandwidth class for the course of each experi-
ment. Also, as is consistent with the real Tor network, we
chose PlanetLab nodes that are geographically distributed
throughout the world.

All Tor routers (both malicious and benign) advertise the
same, unrestricted exit policy. The exit policies of routers
in the real Tor network are difficult to accurately model
due to the reduced size of our network. The global use of
unrestricted exit policies in our experimental Tor testbed
actually decreases the potential effectiveness of our attack.
With the potential for more restrictive exit policies in a real
Tor network, we expect the attack’s performance to improve
since the malicious routers would have a higher probability
of compromising the exit positions.

To demonstrate the effect of the attack, we introduced
a small number of malicious Tor routers into each private
Tor network. In the 40 node network, experiments were
conducted by adding two (2/42) and four (4/44) malicious
nodes. In the 60 node network, three (3/63) and six (6/66)
malicious nodes are added. The fraction of each network’s
bandwidth that is malicious is given in Section 4.3. All ex-
periments were conducted in October 2006 with Tor version
0.1.1.23.

The experiments were conducted as follows: The three
trusted directory servers and each benign Tor router in the

15

network are started first, then the client pool begins gener-
ating traffic through the network. The network is given two
hours for routing to converge to a stable state,1 at which
point the clients are promptly stopped and all previous rout-
ing information is purged so that the clients behave exactly
like new Tor proxies joining the network. The malicious
nodes are then added to the network and the clients once
again generate traffic for precisely two hours. This procedure
is repeated for the 2/42, 4/44, 3/63, and 6/66 experiments.
The results of these experiments are given in Section 4.4.

4.2 Traffic Generation
To make the experimental Tor deployments realistic, it

is necessary to generate traffic. Unfortunately, there is not
much data available on the nature of Tor traffic and exact
numbers of clients on the real Tor network. Therefore, we
adopt the same traffic-generation strategy as Murdoch [16].
To generate a sufficient amount of traffic, we used six dual
Xeon class machines running GNU/Linux with 2GB of RAM
on a 10 Gbit/s link running a total of 60 clients in the 40
node network, and a total of 90 clients in the 60 node Tor de-
ployment. These clients made requests for various web pages
and files of relatively small size (less than 10 MB) using the
HTTP protocol. The interface between the HTTP client
and the Tor proxy is made possible by the tsocks transpar-
ent SOCKS proxy library [27]. The clients also sleep for a
random period of time between 0 and 60 seconds and restart
(retaining all of their cached state including routing informa-
tion and entry guards) after completing a random number
of web requests so that they do not flood the network.

4.3 Malicious Node Configuration
To maximize the amount of the anonymized traffic that

an attacker can correlate, each malicious router advertises
a read and write bandwidth capability of 1.5 MB/s and a
high uptime. Furthermore, each malicious node is rate lim-
ited to a mere 20 KB/s for both data and controls packets to
make the node a low-resource attacker. In terms of the total
network bandwidth in each deployment, the addition of ma-
licious nodes contribute a negligible amount of additional
bandwidth. In the 2/42 and 3/63 experiments, the mali-
cious nodes comprise 0.38% of each network’s bandwidth
while actually advertising approximately 22% of the total
bandwidth. In the 4/44 and 6/66 experiments, malicious
nodes make up 0.76% of the bandwidth while advertising
about 36% of the total network’s bandwidth.

In addition, each malicious node logs the necessary in-
formation for the path linking algorithm, as described in
Section 3.2. The malicious routers’ behavior is aimed at
maximizing the probability that it will be included on a cir-
cuit.

4.4 Experimental Results
In this section, we present the results of the experiments

on our isolated Tor deployments. To demonstrate the ability
of the attack to successfully link paths through the Tor net-
work, we measured the percentage of the Tor circuits that
our path linking algorithm (Section 3.2) can correctly cor-
relate.

1Our attempts to start the network with both honest and
malicious nodes at once failed, due to the inability of the
honest nodes to integrate into the hostile network. The two
hour time period allowed the honest nodes time to fully inte-
grate into the routing infrastructure before adding the ma-
licious nodes.

Table 2: The raw number of compromised circuits

Number of Circuits
Compromised Total

2/42 425 4,774
4/44 3,422 10,199
3/63 535 4,839
6/66 6,291 13,568

Using the data logged by malicious routers, our path link-
ing algorithm was able to link a relatively high percentage
of paths through Tor to the initiating client. In the 40 Tor
router deployment, we conducted experiments by adding
two (2/42) and four (4/44) malicious nodes. The malicious
routers composed roughly 4.8% and 9.1% of each network, or
0.38% and 0.76% of each network’s bandwidth. In the 2/42
experiment, the malicious nodes were able to compromise
approximately 9% of the 4,774 paths established through
the network. We then performed the 4/44 experiment, and
were able to correlate approximately 34% of the 10,199 paths
through the network. Thus, the attack is able to compro-
mise the anonymity of over one-third of the circuit-building
requests transported through the experimental network.

These experiments are repeated for a network of 60 Tor
routers by adding three (3/63) and six (6/66) malicious
nodes. The malicious routers composed about 4.8% and
9.1% of each network, or 0.38% and 0.76% of each network’s
bandwidth. With only three (3/63) malicious routers, the
attack compromises about 11% of the 4,839 paths and in
an experiment with six (6/66) malicious Tor routers, the at-
tack compromised over 46% of the 13,568 paths. The results
as percentages of compromised paths are given in Tables 3
and 4. The raw number of compromised circuits in each
experiment is given in Table 2.

In addition to the correctly correlated paths, there were
only 12 incorrectly correlated paths over all the experiments
(one false positive in the 3/63 experiment, three in the 4/44
experiment, and eight in the 6/66 experiments). The negli-
gible number of false positives shows that our path linking
algorithm is highly accurate; however, the low false-positive
rate may also be a result of the relatively light and uniform
traffic load that was generated.

Table 3: The number of predicted and actual circuits
compromised in the 40 node PlanetLab network.

Experiments
2/42 4/44

Random Selection 0.12% 0.63%
Experimental 8.90% 33.55%

Improvement 7,565% 5,190%

In Tables 3 and 4, the experimental results are compared
to an analytical expectation of the percentage of paths that
can be compromised by controlling the entry and exit nodes
if routers are selected uniformly at random. The analyti-
cal expectation is based on a combinatorial model originally
defined in Tor’s design document [7] as (m

N
)2, where m > 1

is the number of malicious nodes and N is the network size
(at its inception, Tor did not provide load-balancing; routers
were selected uniformly at random). This analytical model
does not take into account the fact that a Tor router may

16

Table 4: The number of predicted and actual circuits
compromised in the 60 node PlanetLab network.

Experiments
3/63 6/66

Random Selection 0.15% 0.70%
Experimental 11.06% 46.36%

Improvement 7,097% 6,530%

be used only once per circuit. Thus, a more precise expecta-
tion can be described by (m

N
)(m−1

N−1
), m > 1. The predicted

fraction of compromised circuits if routers were chosen at
random is given in Tables 3 and 4.

The distinction between the uniform selection expecta-
tions and the experimental results is clear; the experiments
demonstrate that Tor’s addition of load balancing has caused
the number of circuits compromised to increase by 52 and
76 times over uniformly random router selection.

4.5 Attack Discussion
It is worth asking why the earlier analytical model based

upon uniform router selection that predicted a strong resis-
tance to this type of attack does not match our experimental
results. Besides enabling malicious nodes to lie about their
resources, the primary issue is that the analytical model
assumes resource homogeneity across the set of Tor nodes,
when in fact the real Tor network has a heterogeneous re-
source distribution (see Table 1). As a result, routers are not
chosen with an equal probability; those with higher band-
width claims are chosen more frequently. Also, our attack
used selective path disruption to cause circuits to fail, which
is not considered in the analytical model.

Furthermore, since routers have finite resources, they must
reject new connections once their resources are consumed.
To make matters worse, most of the available bandwidth
from low-resource nodes may be exhausted by protocol con-
trol overhead, which decreases the effective size of the net-
work while increasing the probability of a malicious node
being selected. This means that if the Tor network becomes
heavily congested, it would magnify the effectiveness of our
attack.

Given the fraction of bandwidth necessary to compromise
a significant number of circuits in the experimental net-
works, it is possible to extrapolate an estimate of the attack’s
performance in larger Tor networks. Attackers contributing
less than 1% (between 0.38% and 0.78%) of the network’s
aggregate bandwidth were able to compromise up to 46% of
the circuit-building requests for new Tor proxies. Now, as-
sume a Tor network similar in bandwidth distribution to the
real Tor deployment in August 2006 (see Table 1) with 104
MB of total bandwidth. If an adversary could contribute an
upper bound of an additional 1% of bandwidth, only 1.04
MB/s, then one could expect the attack to compromise a
similar fraction of circuit requests as in our experiments.

However, this analysis remains an open problem, due to
the variable router quality, the increasing size of the real Tor
network, the correctness of our traffic generation model, and
the Tor Project’s request [5] that we not experiment with
our attacks on the real Tor network.

5. ATTACK EXTENSIONS
Having presented the basic ideas behind our attacks, we

consider further attack variants and improvements, such as
attacking existing Tor clients instead of only new Tor clients,
router advertisement flooding, and watermarking attacks.

Compromising Existing Clients. Clients that exist within
the network before the malicious nodes join will have already
chosen a set of entry guard nodes. We present two meth-
ods to compromise the anonymity of existing clients. First,
if an attacker can observe the client (e.g., by sniffing the
client’s 802.11 wireless link), he/she can easily deduce the
entry guards used by a particular client. The adversary can
then make those existing entry guards unreachable or per-
form a denial-of-service (DoS) attack on these entry guards,
making these nodes unusable. This forces the client to se-
lect a new list of entry guards, potentially selecting malicious
Tor routers. Another method to attack clients that have a
preexisting list of entry guard nodes would be to DoS a few
key stable nodes that serve as entry guards for a large num-
ber of clients. This would cause existing clients to replace
unusable entry guards with at least one new and potentially
malicious entry guard node.

Improving Performance Under the Resource Reduced
Attack. One concern with the resource-reduced attack that
we describe in Section 3 is that, by itself, the attack can se-
riously degrade the performance of new Tor clients. The
degradation in performance could then call attention to the
malicious Tor nodes. Naturally, the basic attack in Section 3
would be completely indistinguishable from a performance
perspective since the basic adversary does not lie about its
resources.

The first question to ask is whether poor performance un-
der an adversarial situation is a sufficient protection mech-
anism. We believe that the answer to this question is “no”
— it is a poor design choice for users of a system to have
to detect an attack based on poor performance. A better
approach is to have an automated mechanism in place to
detect and prevent our low-resource attack. Furthermore,
a resource-reduced adversary could still learn a significant
amount of private information about Tor clients between
the time when the adversary initiates the attack and time
when the attack is discovered.

The second, more technical question is to ask what a
resource-reduced adversary might do to improve the per-
ceived performance of Tor clients. One possible improve-
ment arises when the attacker wishes to target a particu-
lar client. In such a situation, the adversary could overtly
deny service to anyone but the target client. Specifically,
an adversary’s Tor nodes could deny (or passively ignore)
all circuit-initiation requests except for those requests that
the target client initiates. This behavior would cause the
non-target clients to simply exclude the adversary’s nodes
from their lists of preferred entry guards, and would also
prevent non-target clients from constructing circuits with
the adversary’s nodes as the middle or exit routers. Since
circuit-formation failures are common in Tor [20], we suspect
that this attack would largely go unnoticed.

Displacing Honest Entry Guards. Recall that Tor uses
special entry guard nodes to protect the entry of a circuit
from selective disruption. In order to be marked by the di-
rectory servers as a possible entry guard, a Tor router must
advertise an uptime and bandwidth greater than the median
advertisements (in Tor version 0.1.1.23). Another attack,

17

which is a variant of the Sybil attack [10], can be conducted
by flooding the network with enough malicious routers ad-
vertising high uptime and bandwidth. On our isolated Tor
network, we successfully registered 20 routers all on a sin-
gle IP address and different TCP port numbers.2 Flooding
the network with false router advertisements allows a non-
global adversary to effectively have a “global” impact on
Tor’s routing structure. Namely, this attack increases the
median threshold for choosing entry guards, thereby, pre-
venting benign nodes from being marked as potential entry
guards. This attack could help guarantee that only mali-
cious nodes can be entry guards.

Compromising Only the Entry Node. As another ex-
tension to our attack, suppose that an adversary is less in-
terested in breaking anonymity in general, but is instead
particularly interested in correlating Tor client requests to
a specific target website (such as a website containing con-
trolled or controversial content). Suppose further that the
adversary has the ability to monitor the target website’s net-
work connection; here the adversary might have established
the target website to lure potential clients, or might have
obtained legal permission to monitor this link. Under this
scenario, an adversary only needs to compromise an entry
node in order to correlate client requests to this target web-
site. The critical idea is for the entry router to watermark a
client’s packets using a time-based watermarking technique,
such as the technique used in Wang, et al. [28] or other vari-
ants. The adversary’s malicious entry routers could embed
a unique watermark for each client-middle router pair. A
potential complication might arise, however, if the client is
using Tor to conceal simultaneous connections to multiple
websites, and if the circuits for two of those connections
have the same middle router.

6. PROPOSED DEFENSES
Non-global, but high-resource (uptime, bandwidth), ad-

versaries seem to pose a fundamental security challenge to
any high-performance, multi-hop privacy enhancing system
that attempts to efficiently balance its traffic load, and we
welcome future work directed toward addressing this chal-
lenge. We consider, however, methods for detecting non-
global low-resource adversaries.

In order to mitigate the negative effects of false routing in-
formation in the network, it is necessary to devise a method-
ology for verifying a router’s uptime and bandwidth claims.
Here, we provide a brief overview of some potential solutions
and alternative routing schemes.

6.1 Resource Verification
Verifying Uptime. A server’s uptime could be checked
by periodically sending a small heartbeat message from a
directory server. The additional load on the directory server
would be minimal and it could effectively keep track of how
long each server has been available.

Centralized Bandwidth Verification. Since Tor relies
upon a centralized routing infrastructure, it is intuitive to
suggest that the trusted centralized directory servers, in ad-
dition to providing routing advertisements on behalf of Tor

2The trusted directory servers currently (as of Tor version
0.1.1.23) have no limits as to the number of routers that can
be hosted on a single IP address. In theory, an attacker can
register up to 216 − 1 Tor routers to the same IP address.

routers, also periodically verify the incoming bandwidth ad-
vertisements that are received from Tor routers. The direc-
tory server could measure a router’s bandwidth before pub-
lishing the routing advertisement and correct the value if it
found that the router does not have its claimed bandwidth.
The difficulty with this approach is that it cannot detect
selectively malicious nodes. Therefore, it is necessary for
the bandwidth verification mechanism to continuously mon-
itor each node’s bandwidth. Due to the significant traffic
load that would be placed upon the few centralized direc-
tory servers, this centralized bandwidth auditing approach
would create a significant performance bottleneck.

Distributed Bandwidth Verification. In order to detect
false bandwidth advertisements, it may be tempting to aug-
ment the routing protocol to allow Tor routers to proactively
monitor each other. Anonymous auditing [25], where nodes
anonymously attempt to verify other nodes’ connectivity in
order to detect collusion, has been proposed as a defense
against routing attacks in structured overlays. A similar
technique could be designed to identify false resource ad-
vertisements. However, this technique is also insufficient at
detecting selectively malicious nodes. In addition, this ap-
proach introduces additional load in the network and could
result in significant performance degradation.

Distributed Reputation System. Reputation systems
have been proposed for anonymous systems within the con-
text of reliable MIX cascades [9]. One could envision a rep-
utation system similar to TorFlow [21], that actively verifies
the directory server reported bandwidth claims for each Tor
router and dynamically updates each bandwidth claim. Se-
lectively malicious nodes are still difficult to detect with such
a reputation system.

6.2 Mitigating Sybil Attacks
In order for any reputation system to be effective, it is

necessary to address the Sybil attack [10]. Recall that the
directory servers place no constraints upon the number of
Tor routers that may exist at a single IP address (as of Tor
version 0.1.1.23). This can be exploited to effectively re-
place all entry guards with malicious nodes (see Section 5).
To help mitigate this kind of attack, the directory servers
should limit the number of routers introduced at any sin-
gle IP address. Furthermore, enforcing location diversity
increases the resources required to perform this attack [11].
Following the initial disclosure our results [2], Tor adopted
countermeasures that (1) allow only three Tor routers to be
hosted at any single IP address and (2) dictate that circuits
may not include more than one router from a particular class
B address space [1].

6.3 Alternative Routing Strategies
Since Tor’s desire to efficiently balance its traffic over the

available resources in the network has left it vulnerable to
traffic correlation attacks, it is prudent to consider alternate
routing strategies that may provide adequate load balancing
while preserving the network’s anonymity.

Proximity Awareness. Secure routing based on proximity
awareness has been proposed in peer-to-peer networks [3].
In such a routing strategy, the next hop is computed by min-
imizing a distance metric, such as round trip time (RTT).
Proximity-based routing may over-optimize and cause cir-
cuits to be built deterministically. Also since paths are
multi-hop and source routed, the client would need distance

18

metrics for the first hop to the second hop and the second
hop to the third hop. In addition, these metrics must be ver-
ified. Finally, proximity routing seems to be incompatible
with enforcing location diversity.

Loose Routing. Loose routing in anonymous systems has
been proposed in Crowds [23], where path lengths are non-
deterministic since each hop chooses to forward to another
intermediate hop probabilistically. This strategy places a
great amount of trust on the entry nodes. A malicious entry
node could simply route all traffic immediately to the exit
server.

Local Reputation-based Routing. Another scheme could
be to initially choose paths with a uniform probability and
over time, maintain local reputation information for all nodes
used in a path. At the start, the performance would be ex-
pectedly poor, but over time, as clients begin to choose high
quality Tor routers, they can begin to optimize for perfor-
mance. This approach is not vulnerable to false advertise-
ments.

We plan to explore these alternate routing strategies as
future work, in particular, focusing on an analysis of the
anonymity that each respective routing technique provides.

7. CONCLUSION
We present a low-resource end-to-end traffic analysis at-

tack against Tor that can compromise anonymity before any
payload data is sent. The attack stems from Tor’s tendency
to favor routers that claim to be high-resource with high-
uptime in its routing process in an attempt to optimally bal-
ance the traffic load. However, since there is no mechanism
to verify resource claims, we experimentally show that it is
possible for even a low-resource adversary to compromise
an unfairly large fraction of the circuit-building requests
through the network.

In addition, we illustrate the feasibility of displacing all
entry guard nodes with malicious nodes, thereby having a
global effect upon the Tor’s routing mechanism. Attack ex-
tensions are presented that further reduce the cost of launch-
ing this atack.

To mitigate the low-resource variety of these attacks, we
propose solutions aimed at verifying all bandwidth and up-
time claims. However, these attacks highlight the inherent
challenge in designing an anonymity-preserving reputation
system that is robust to a selectively malicious adversary.

Since this study shows how anonymity and efficient re-
source (bandwidth) use appear to be in opposition, our hope
is that these attacks motivate further research in the area of
designing and implementing optimal routing algorithms in
anonymous overlay networks that deliver a high level of per-
formance without compromising the security of any aspect
of the system.

Acknowledgements. We thank Nikita Borisov, Roger Din-
gledine, Paul Syverson, and the anonymous reviewers whose
insightful feedback greatly improved the quality of this pa-
per. This research was partially funded by NSF Award
0430593, “ITR: Privacy and Surveillance In Wireless Net-
works” and NSF CRI award 0454404 “CRI: Wireless In-
ternet Building Blocks for Research, Policy, and Educa-
tion.” T. Kohno was supported in part by NSF Grant CNS-
0627157 and gifts from Cisco and Intel.

8. REFERENCES
[1] Bauer, K., and McCoy, D. Tor specification

proposal 109: No more than one server per ip address.
http://tor.eff.org/svn/trunk/doc/spec/
proposals/109-no-sharing-ips.txt, March 2007.

[2] Bauer, K., McCoy, D., Grunwald, D., Kohno,

T., and Sicker, D. Low-resource routing attacks
against anonymous systems. Computing Science
Technical Report CU-CS-1025-07, University of
Colorado, Feb. 2007.

[3] Castro, M., Druschel, P., Ganesh, A.,

Rowstron, A., and Wallach, D. S. Secure routing
for structured peer-to-peer overlay networks. In OSDI
2002.

[4] Clarke, I., Sandberg, O., Wiley, B., and Hong,

T. W. Freenet: A distributed anonymous information
storage and retrieval system. In Workshop on Design
Issues in Anonymity and Unobservability (2000).

[5] Dingledine, R. Personal communication., October
2006.

[6] Dingledine, R., and Mathewson, N. Tor path
specification.
http://tor.eff.org/cvs/doc/path-spec.txt.

[7] Dingledine, R., Mathewson, N., and Syverson,

P. Tor: The second-generation onion router. In 13th
USENIX Security Symposium (2004).

[8] Dingledine, R., Mathewson, N., and Syverson,

P. Challenges in deploying low-latency anonymity.
NRL CHACS Report 5540-625, 2005.

[9] Dingledine, R., and Syverson, P. Reliable MIX
Cascade Networks through Reputation. In Proceedings
of Financial Cryptography (FC 2002).

[10] Douceur, J. The Sybil Attack. In Proceedings of
International Peer To Peer Systems Workshop
(IPTPS 2002).

[11] Feamster, N., and Dingledine, R. Location
diversity in anonymity networks. In Proceedings of the
Workshop on Privacy in the Electronic Society
(WPES 2004) (2004).

[12] Freedman, M. J., and Morris, R. Tarzan: A
peer-to-peer anonymizing network layer. In
Proceedings of the 9th ACM Conference on Computer
and Communications Security (CCS 2002)
(Washington, DC, November 2002).

[13] Goldberg, I. On the security of the tor
authentication protocol. In Proceedings of the Sixth
Workshop on Privacy Enhancing Technologies (PET
2006) (Cambridge, UK, June 2006), Springer.

[14] Goldschlag, D. M., Reed, M. G., and Syverson,

P. F. Hiding Routing Information. In Proceedings of
Information Hiding: First International Workshop
(May 1996), Springer-Verlag, LNCS 1174, pp. 137–150.

[15] Iperf - The TCP/UDP Bandwidth Measurement Tool.
http://dast.nlanr.net/Projects/Iperf.

[16] Murdoch, S. J. Hot or not: Revealing hidden
services by their clock skew. In 13th ACM Conference
on Computer and Communications Security (CCS
2006) (Alexandria, VA, November 2006).

[17] Murdoch, S. J., and Danezis, G. Low-cost traffic
analysis of Tor. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy (May 2005),
IEEE CS.

[18] Murdoch, S. J., and Zieliński, P. Sampled traffic

19

analysis by internet-exchange-level adversaries. In
Proceedings of Privacy Enhancing Technologies
Workshop (PET 2007) (June 2007).

[19] Øverlier, L., and Syverson, P. Locating hidden
servers. In Proceedings of the 2006 IEEE Symposium
on Security and Privacy (May 2006), IEEE CS.

[20] Perry, M. Securing the tor network. Defcon 2007.
http://fscked.org/transient/
SecuringTheTorNetwork.pdf.

[21] Perry, M. Torflow.
http://tor.eff.org/svn/torflow/README.

[22] Peterson, L., Muir, S., Roscoe, T., and

Klingaman, A. PlanetLab Architecture: An
Overview. Tech. Rep. PDN–06–031, PlanetLab
Consortium, May 2006.

[23] Reiter, M., and Rubin, A. Crowds: Anonymity for
web transactions. ACM Transactions on Information
and System Security 1, 1 (June 1998).

[24] Rennhard, M., and Plattner, B. Introducing
MorphMix: Peer-to-Peer based Anonymous Internet
Usage with Collusion Detection.

In Proceedings of the Workshop on Privacy in the
Electronic Society (WPES 2002) (Washington, DC,
USA, November 2002).

[25] Singh, A., Druschel, P., and Wallach, D. S.

Eclipse attacks on overlay networks: Threats and
defenses. In IEEE INFOCOM (2006).

[26] Syverson, P., Tsudik, G., Reed, M., and

Landwehr, C. Towards an Analysis of Onion
Routing Security. In Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues
in Anonymity and Unobservability (July 2000),
H. Federrath, Ed., Springer-Verlag, LNCS 2009,
pp. 96–114.

[27] Transparent SOCKS Proxying Library.
http://tsocks.sourceforge.net.

[28] Wang, X., Chen, S., and Jajodia, S. Tracking
anonymous peer-to-peer voip calls on the internet. In
Proceedings of the ACM Conference on Computer and
Communications Security (November 2005),
pp. 81–91.

20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

